Fuel consumption of thermal power technologies under maneuvering modes

Kobernik V.S., https://orcid.org/0000-0001-8727-7157
Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha str., Kyiv, 03150, Ukraine
Language: Ukrainian
Source: The Problems of General Energy, 2020, 4(63):45―49
https://doi.org/10.15407/pge2020.04.045
Section: Mathematical modeling of energy facilities and systems
UDC: 621.311
Received: 21.10.2020
Published: 28.12.2020

Abstract:

A characteristic feature of the present day development of power engineering lies in the increase in the unevenness of power systems schedules. The structure of generating powers of Ukrainian energy engineering is overloaded with basic powers and characterized by a sharp deficit of maneuvering wanes. To cover the uneven load of the power system during the operation of existing and construction of new power plants, it is necessary to take into account the possibility of their operation under maneuvering modes. This paper determines the influence of work of power plants i under maneuvering modes on the specific consumption of conditional fuel on the released electric energy at working on gas or coal fuel. Fuel consumption for starting of a unit depends on its type and downtime in reserve. The use of steam–and–gas facilities and gas turbines helps to enhance the maneuverability of power plants. Alternative options for the development of thermal energy are the introduction of gas–piston power plants and power units with fluidized–bed boilers. We present formulas for the calculations of fuel consumption on by power units for start–ups and specific consumptions depending on the load and degree of their involvement to regulating loads for different thermal energy technologies: steam–turbine condensation and district heating power units; steam–and–gas and gas turbine plants; gas piston installations; power units with fluidized bed boilers. For enhancing the maneuverability of power plants, working on fossil fuels, their modernization and renewal of software are necessary. Quantitative assessment of the efficiency of power units and separate power plants during their operation under variable modes is important for forecasting the structure of generating capacities of power systems, the need to introduce peak and semi–peak capacities, the choice of the most profitable composition of operating equipment at different schedules of electrical loads

Keywords: thermal power, power unit, maneuverable mode, electrical load, specific fuel consumption

References:

  1. Zvit z otsinky vidpovidnosti (dostatnosti) heneruiuchykh potuzhnostei. Ukrenergo, 2019. 73 p. URL: https://ua.energy/wp-content/uploads/2019/12/Zvit-z-otsinky-vidpovidnosti-2019.pdf [in Ukrainian].
  2. GKD 34.10.502 – 2003. Vitrata hazomazutnoho paliva pid chas spaliuvannia na TES Ukrainy kamianoho vuhillia z vykhodom letkykh rechovyn menshe 20%. URL: https://www.yumpu.com/xx/document/read/55413855/gkd-34-10-502-2003-rashod-gazomazutnog [in Ukrainian].
  3. Dryomin, V.P., Kostenko, A.P., & Zgurovets, O.V. (2008). Analysis of expense of fuel by the blocks of heat power-stations and possibilities of their economy at adjusting of electro-consumption. The Problems of General Energy, 1, 73-77. URL: http://pge.org.ua/index.php?option=com_docman&task=art_list&mid=20081&gid=17&lang=u [in Ukrainian].
  4. Kovetskii, V.M., & Kovetskaia, M.M. (2007). Otsenka manevrennykh vozmozhnostei energogeneriruiuschikh ustanovok. The Problems of General Energy, 2, 47-54. URL: http://pge.org.ua/index.php?option=com_docman&task=art_details&mid=20072&gid=186&lang=ua [in Russian].
  5. SO 34.09.112-2001 Normy poter topliva, elektroenergii i para pri puskakh teplofikatsionnykh energoblokov moschnostiu 60-250 МVt teplovykh electrostantsii. 2001, 7 p. URL: http://normativ.info/list_files.php?put=excel_base/norms/sto.csv&n=847 [in Russian].
  6. Moshkarin, O.V., & Melnikov, Yu.V. (2007). Otsenka pokazatelei raboty moschnykh odnotselevykh parogazovykh i parosilovykh energoblokov na chastichnykh nagruzkakh. Vestnik Ivanovskogo gosudarstvennogo energetishcheskogo universiteta, 2, 1-4. URL: http://ispu.ru/files/str._3—6_1.pdf [in Russian].
  7. Beloborodov, S.S. (2019). Mnogofaktornyi analiz i razrabotka vysokomanevrennoi TETS dlia prokhozhdeniia sutochnykh grafikov potrebleniia elektroenergii OES Rossii. MEI. Dis. kand. tekhn. nauk. Spetsialnost 05.14.01 – Energeticheskie sistemy i kompleksy. 212 p. URL: https://mpei.ru/diss/Lists/FilesDissertations/399-%D0%94%D0%B8%D1%81%D1%81%D0%B5%D1%80%D1%82%D0%B0%D1%86%D0%B8%D1%8F.pdf (Last accessed: 06.10.2020) [in Russian].
  8. Resheniia dlia elektrostantsii Wärtsilä (2016). 92 p. URL: https://cdn.wartsila.com/docs/default-source/local-files/russia/power-plants/power-plants-solutions_russian_06_2016.pdf?sfvrsn=caf86444_2 Last accessed: 06.10.2020) [in Russian].
  9. Platonov, A.S., & Pikhletskii, V.V. (2013) Otsenka effektivnosti raboty mini-TETS na baze gazoporshnevykh ustanovok. Sovremennaia nauka. Seriia “Estestvennye i Tekhnicheskie nauki”, 11-12, 21-28. URL: http://www.nauteh-journal.ru/index.php/----etn13-11/1059-a [in Russian].
  10. Vozmozhnosti i preimuschestva gazoporshnevykh ustanovok v kogeneratsionnykh avtonomnykh elektrostantsiiakh. URL: https://manbw.ru/analitycs/gazoporshnevye-installations-cogeneration-autonomus-power-stations.html (Last accessed: 17.08.2020) [in Russian].
  11. Riabov, G.A. (2016). Perspektivy osvoeniia tekhnologii szhiganiia uglia v tsirkuliruiuschem kipiaschem sloe na rossiiskikh ugolnykh TES. “UgolEko-2016”. М.: VТI. 27 p. URL: http://coaleco.ru/wp-content/uploads/2016/10/3-Ryabov-VTI-Coaleco2016.pdf [in Russian]

Downloads:

Full text (PDF)