Development of the world market of fuel-cell power plants. Creation of normative base for hydrogen power

1Dudnyk О.М., PhD (Engin.), Senior Research Scientist, ,
1Dunaevskaya N.I., PhD (Engin.), Senior Research Scientist, ,
2Sokolovska I.S., PhD (Engin.),
1Coal Energy Technology Institute of the National Academy of Sciences of Ukraine, 19 Andriivska str., Kyiv, 04070, Ukraine
2Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha str., Kyiv, 03150, Ukraine
Language: Ukrainian
Source: The Problems of General Energy, 2020, 1(60):66-73
Section: The state regulation of the energy sector as a natural monopoly
UDC: 620.9:621.311:662.71:662.63:544.478
Received: 14.01.2020
Published: 11.03.2020


We show the importance of development and implementation of new hydrogen power systems for different branches of the Ukrainian economy. It is determined that the key technologies for the creation of hydrogen power in Ukraine are the technologies of hydrogen production using own energy sources and the direct conversion of chemical energy of hydrogen fuels into electricity in fuel cells. We present the main characteristics and advantages of fuel cell power plants (FCPP) and the global volume of their application for different industries. The total electric capacity of FCPP working in 2019 became more than 11 times greater as compared with 2009 and reached 1,100 MW. It was established that the introduction of fuel cell technologies in industrialized countries is considered as a basis for the creation of a centralized world hydrogen economy with the presence and further development of extensive hydrogen infrastructure.
The state of work on standardization in the field of hydrogen power at the international level is analyzed, and the complexity and multiplicity of such tasks are shown. It is substantiated that the appropriate base of normative documents is necessary for the practical implementation of energy-efficient and environmentally friendly hydrogen technologies in Ukraine, in particular, for the production or import of equipment with its subsequent certification. These normative documents should be harmonized with European and international ones in order to remove possible technical barriers in trade.

Keywords: hydrogen, fuel cells, power plant, standardization.


  1. Dudnyk, O.M., & Sokolovska, I.S. (2017). Modern Fuel Cell Power Systems. Coal and solid organic waste gasification for hydrogen-rich synthesis gas production. Improving the efficiency and environmental performance of the combustion, gasification and thermochemical conversion of solid fuels: Abstracts of the Reports of the First Ukrainian-Polish Workshop, 28 February - 1 March. Kyiv. P. 46-48.
  2. Dudnyk, O.M., Dunaevska, N.I., & Sokolovska, I.S. (2019). Application of Integrated Gasification Combined Cycle plant technologies in the global energy industry and prospects for their introduction in Ukraine. The Problems of General Energy, 3(58), 37-44 [in Ukrainian].
  3. Ross K. (2020). Fuel cell market breaks 1 GW global capacity barrier. Power Engineering International. #1. 1 p. URL: (Last accessed: 10.01.2020).
  4. Shulzhenko, S.V., & Denisov, V.A. (2014). Competitiveness of Fuel Cells Comparing with the Traditional Electric and Thermal Power Generation Technologies. The Problems of General Energy, 3(38), 29-35 [in Ukrainian].
  5. Hart, D., Lehner, F., Jones, S., Lewis, J., & Klippenstein, M. (2018). The Fuel Cell Industry Review. 4th Energy Wave. 50 p. URL: (Last accessed: 25.11.2019).
  6. Korchevoy, Yu.P., Dudnik, A.N., & Zvarich, V.N. (2002). Energeticheskie ustanovki s toplivnyimi elementami kak privod avtomobiley i avtobusov (Obzor). Ekotehnologii i resursosberezhenie, 1, 9-21 [in Russian].
  7. US Car Sales Data. Toyota. Toyota Mirai. URL: (Last accessed: 27.11.2019).
  8. Toyota Mirai. URL: (Last accessed: 28.11.2019).
  9. Hydrogen Stations Map. URL: (Last accessed: 12.12.2019).
  10. Dudnik, A.N., Korchevoy, Yu.P., & Maystrenko, A.Yu. (2000). Gibridnyie energeticheskie ustanovki na toplivnyih elementah. Energetika: EkonomIka, tehnologIya, ekologIya, 3, 33-36 [in Russian].
  11. Dudnyk, O.M., & Sokolovska, I.S. (2010). Conversion of Ukrainian Low Grade Solid Fuels with CO2 Capture. Proceedings of 27th Annual International Pittsburgh Coal Conference. PPC 2010. Volume 2. Pages 1012-1033. URL: (Last accessed: 29.11.2019).
  12. Dudnik, O., Sokolovska, I. (2005). Results of Organic Fuel Conversion at Fuel Cell Test Installation. In: Sammes N., Smirnova A., Vasylyev O. (eds) Fuel Cell Technologies: State and Perspectives. NATO Science Series (Mathematics, Physics and Chemistry), vol 202. Springer, Dordrecht. URL: (Last accessed: 29.11.2019).
  13. Ando, O., Oozawa, H., Mihara, M., Irie, H., Urashita, Y., & Irthami, T. (2015). Demonstration of SOFC-Micro Gas Turbine (MGT) Hybrid Systems for Commercialization. Mitsubishi Heavy Industries Technical Review, Vol. 52, 4, 43-52. URL: (Last accessed: 02.12.2019).
  14. Irie, H., Miyamoto, K., Teramoto, Y., Nagai, T., Endo, R., & Urashita, Y. (2017). Efforts toward Introduction of SOFC-MGT Hybrid System to the Market. Mitsubishi Heavy Industries Technical Review, Vol. 54, 3, 69-72. URL: (Last accessed: 11.12.2019).
  15. Berg, H.P., Kleissl, M., Himmelberg, A., Lehmann, M., Prechavut, N., & Vorpahl, M. (2019). Heat balancing of direct reforming fuel cells in MGT-SOFC hybrid systems IOP Conf. Ser.: Mater. Sci. Eng. 501 012007.
  16. The role of hydrogen and fuel cells in providing affordable, secure low-carbon heat. (2014). White paper. A H2FC Supergen. The hydrogen and fuel cell research hub. Ed. Paul Doddsand Adam Hawkes. London: Imperial College. 186 p. URL: (Last accessed: 09.12.2019).
  17. Dudnik, A.N., & Melah, V.G. (2007). Vodorodnyie avtozapravochnyie stantsii. Ekotehnologii i resursosberezhenie, 4, 3-12. URL: (Last accessed: 02.12.2019) [in Russian].
  18. Dudnyk, O.M., & Sokolovska, I.S. (2015). Doslidzhennia protsesiv otrymannia vodniu z ukrainskykh enerhetychnykh kamianykh ta burykh vydiv vuhillia. Voden v alternatyvnii enerhetytsi ta novitnikh tekhnolohiiakh / za zah. red. akademikiv NANU V.V. Skorokhoda ta Yu.M. Solonina. K.: «KIM». P. 91-97. URL: (Last accessed: 18.12.2019) [in Ukrainian].
  19. Dudnyk, O.M., Trypolskyi, A.I., Stryzhak, P.E., Kalishyn, Ye.Iu., & Sokolovska, I.S. (2015). Otrymannia vodniu heterohenno-katalitychnoiu konversiieiu tverdykh orhanichnykh vidkhodiv. Voden v alternatyvnii enerhetytsi ta novitnikh tekhnolohiiakh / za zah. red. akademikiv NANU V.V. Skorokhoda ta Yu.M. Solonina. K.: KIM, P. 24-32. URL: (Last accessed: 17.12.2019) [in Ukrainian].
  20. Dudnik, A.N., Strizhak, P.E., Sokolovskaya, I.S., Tripolskiy, A.I., Kalishin, E.Yu., & Donets, V.V. (2011). Izuchenie protsessa karbonizatsii sheluhi podsolnechnika. Sovremennaya nauka: issledovaniya, idei, rezultatyi, tehnologii, 3(8), 74-78. Dnepropetrovsk: NPVK "Triakon". URL: (Last accessed: 18.12.2019) [in Russian].
  21. Manufacturing Cost Analysis of 1, 5, 10, and 25 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications. Battelle Memorial Institute. (2017). 293 p. URL: (Last accessed: 16.12.2019).
  22. Maruta, A. (2016). Japan’ s ENE-FARM programme. Open Workshop “Fuel cells: Why is Austria not taking off?”. 22 p. URL: (Last accessed: 02.01.2020).
  23. Kim, E. (2018). Feature: South Korea flies flag for fuel cells. Power Engineering International, Vol.26, 8, 5 p. URL: (Last accessed: 16.12.2019).
  24. HiEff-BioPower. Development of a new highly efficient and fuel flexible CHP technology based on fixed-bed updraft biomass gasification and a SOFC. URL: (Last accessed: 19.12.2019).
  25. Ukrainskyi klasyfikator normatyvnykh dokumentiv ДК 004:2008 (ICS:2005, MOD). URL: (Last accessed: 03.01.2020) [in Ukrainian].
  26. Official site of ISO. URL: (Last accessed: 08.01.2020).
  27. Official site of IEC. URL: (Last accessed: 09.01.2020).
  28. Official site of CENELEC. URL: (Last accessed: 09.01.2020).
  29. Official site of CEN. URL: (Last accessed: 08.01.2020).
  30. Sector Forum Energy Management / Working Group Hydrogen Final Report; EUR 27641 EN; 10.2790/66386. URL: (Last accessed: 03.01.2020).
  31. DSTU EN 62282-3-100:2014 Fuel cell technologies. Part 3-100. Stationary fuel cell power systems. Safety (EN 62282-3-100:2012, IDT) / Kulyk M., Dubovskyi S., Dudnyk O., Sokolovska I., Stoianova I., Kadenskyi M., Khortova O., Shvartsman Z. [Chynnyi vid 2019-01-01]. (Natsionalnyi standart Ukrainy) [in Ukrainian].
  32. DSTU EN 62282-3-300:2017 (EN 62282-3-300:2012, IDT; IEC 62282-3-300:2012, IDT) Fuel cell technologies. Part 3-300. Stationary fuel cell power systems. Installation / Sokolovska I.S., Bilodid V.D., Dudnyk O.M., Kuts H.O., Kobernyk V.S., Shliapin V.O. [Chynnyi vid 2019-01-01]. (Natsionalnyi standart Ukrainy) [in Ukrainian].
  33. DSTU EN 62282-5-1:2017 (EN 62282-5-1:2012, IDT; IEC 62282-5-1:2012, IDT) Fuel cell technologies. Part 5-1: Portable fuel cell power systems. Safety / Sokolovska I.S., Bilodid V.D., Dudnyk O.M., Kuts H.O., Kobernyk V.S., Shliapin V.O. [Chynnyi vid 2019-01-01]. (Natsionalnyi standart Ukrainy). (Natsionalnyi standart Ukrainy) [in Ukrainian].


Full text (PDF)