Content of collections

A system of mathematical models for studying the prospects of functioning and development of gas industry under current conditions

Leshchenko I.Ch., PhD (Engin.), Senior Research Scientist
Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha str., Kyiv, 03150, Ukraine
Language: Ukrainian
Source: The Problems of General Energy, 2017, 3(50):5-14
Section: Mathematical modeling of energy facilities and systems
UDC: 622.324:338.5
Received: 18.09.2017
Published: 17.10.2017


To study the prospects of development of the gas industry, we propose a system of mathematical models that takes into account the considerable uncertainties of external and internal conditions of its operation, the life time of main technological equipment, and constraints on investment resources. The optimization mathematical model of development of the gas industry is implemented in the modeling language MathProg, which enables one to describe the logic of mathematical model fairly transparently by using binary variables, which is quite problematic in the application of other optimizers. It is established that the use of GLPK optimizer enables one to solve large-scale problems with binary variables, which include the task of forecasting the functioning and development of gas industry within an acceptable time framework.

Keywords: gas industry, gas transportation system, mathematical model, binary variable, mathematical programming.


  1. Sait International Group of Liquefied Natural Gas Importers. URL:
  2. Bredshou, M. (2017). Hlobalnyi rynok SPH: Revoliutsiia v zamedlennom tempe. Opublikovano 15.09.2017. URL:Глобальный-рынок-СПГ-Революция-в-замедленном-темпе-Майкл-Бредшоу-Профессор-глобальных-энергоресурсов-Бизнес-школа-Варвика-Великобритания [in Russian].
  3. IGU Releases 2017 Wholesale Gas Price Survey. July 5, 2017. URL:
  4. Rios-Mercado, R.Z.,& Borraz-Sanchez, C. (2015). Optimization problems in natural gas transportation systems: A state-of-the-art review. Applied Energy. 147, 536—555. URL:
  5. Plummer, J., Schreider, S., & McInnes, D. (2013). Optimisation modelling for gas supply in Eastern Australia. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1-6 December. URL:
  6. Gunes, Ersin Fatih. (2013). Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system. Graduate Theses and Dissertations. Paper 13294. URL:
  7. Zheng, Q.P., Rebennack, S., Iliadis, N.A., & Pardalos, P.M. Optimization Models in The Natural Gas Industry. URL:
  8. Rusakova, V.V. (2010). Razrabotka nauchno-metodolohicheskikh osnov formirovaniia stratehii razvitiia hazovoi otrasli. Extended abstract of candidate’s thesis. Moscow [in Russian].
  9. Kostyukovskyi, B.A., & Leshchenko, I.Ch. (2008). Gas industry development prognostication in the conditions of market and ecological limitations. Problemy Zahal’noi Enerhetyky - The Problems of General Energy, 2 (18), 24—28 [in Ukrainian].
  10. Leshchenko, I.Ch. (2013). Evaluation of cost indicies of the gas industry’s technological objects under uncertain conditions of their functioning. Problemy Zahal’noi Enerhetyky - The Problems of General Energy,4 (35), 24—32 [in Ukrainian].
  11. Rozporiadzhennia Kabinetu Ministriv Ukrainy vid 31.05.2017 № 365-r. Tekhniko-ekonomichne obgruntuvannia Rekonstruktsiia kompresornoi stantsii Romny mahistralnoho hazoprovodu Urenhoi–Pomary–Uzhhorod. URL: [in Ukrainian].
  12. Pavlyk, V.V., Kontsur, Z.I., Vovk, I.M., & Dykhnilkin, V.V. (2012). Modernyzatsyia HTS. Sdelano v Ukrayne. Mir Avtomatizatsii, №3, 50—54 [in Russian].
  13. GLPK Wikibook. URL:
  14. Modeling Language GNU MathProg. Language Reference for GLPK Version 4.45 (DRAFT, December 2010). URL:


Full text (PDF)