A method for calculating the dynamics of the process of natural gas reforming

Shraiber O.A., Dr. Sci. (Engin.), Professor, https://orcid.org/0000-0003-2610-568X ,
Antonets I.V., PhD (Engin.), https://orcid.org/0000-0003-0110-0516
Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha str., Kyiv, 03150, Ukraine
Language: Ukrainian
Source: The Problems of General Energy, 2017, 2(49):65-74
Section: Study and optimization of the technological objects and systems of the energy sector
UDC: 536.7
Received: 08.06.2017
Published: 14.07.2017


We have proposed a new scheme of reaction element for the realization of the process of natural gas reforming. We have developed a mathematical model of its dynamics, where the dense bed of catalyst granules with the reacting gas mixture in its cavities is considered as a quasihomogeneous substance with certain effective physical characteristics. An iteration algorithm for the solution of equations of our model and two programs for its realization have been developed. We also present an example of calculating the change in the flow rates of components of the reacting gas mixture and calorific value of the reformed fuel along the apparatus length.

Keywords: reaction element, reforming process, dynamics, gas mixture, quasihomogeneous substance, iteration algorithm, numerical calculations.


  1. Shraiber, O.A. (2013). Use of secondary energy resources by the method of thermochemical recuperation. Computation of fuel conversion. Problemy Zahal’noi Enerhetyky - The Problems of General Energy, 2 (33), 39-42 [in Ukrainian].
  2. Pashchenko, D.I. (2011). Povyshenie enerheticheskoi effektivnosti vysokotemperaturnykh teplotekhnolohicheskikh ustanovok za schet termokhimicheskoi reheneratsii teploty. Extended abstract of candidate’s thesis. Saratov [in Russian].
  3. Hoang, D.L. Chan, S.H. (2004). Modeling of a catalytic autothermal methane reformer for fuel cell applications. Appl. Catal., Ser. A: General. No. 268. P. 207-216.
  4. Nosach, V.G. (1989). Enerhiia topliva. Kiev: Nauk. Dumka [in Russian].
  5. Teplovoi raschet kotelnyh ahrehatov (normativnyi metod). Moscow: Enerhiia [in Russian].
  6. Isachenko, V.P., Osipova, V.A., & Sukomel, A.S. (1969). Teploperedacha. Moscow: Enerhiia [in Russian].
  7. Vasilenko, S.M., Ukrainets, A.I., & Olshevskii, V.V. (2004). Osnovy teploobminu. Kyiv: NUKhT [in Ukrainian].
  8. Ametistov, E.V., Grigorev, V.A., Emtsev, B.T. et al. (1982). Teplo- i massoobmen. Teplotehnicheskii eksperiment: Spravochnik. Moscow: Enerhoizdat [in Russian].
  9. Miheev, M.A., & Miheeva, I.M. (1961). Kratkii kurs teploperedachi. Moscow: GEI [in Russian].
  10. Krylov, A.N., Popov, S.K., & Serhievskii, E.D. (2008). Modelirovanie protsessov teplo- i massoobmena pri termohimicheskoy reheneratsii teploty. Vestnik MEI, 4, 49-54 [in Russian].
  11. Xu, J., & Froment, F. (1989). Methane steam reforming, methanation and water-gas shift: I Intrinsic kinetics. AIChE J, Vol. 35, No. 1, P. 88-96. https://doi.org/10.1002/aic.690350109
  12. Lavrov, N.V. (1971). Fiziko-khimicheskie osnovy protsessa horeniia topliva. Moscow: Nauka [in Russian].
  13. Ravdel, A.A., & Ponomareva, A.M. (1974). Kratkii spravochnik fiziko-khimicheskikh velichin. L.: Khimiia [in Russian].
  14. Hoang, D.L., Chan, S.H., & Ding, O.L. (2005). Kinetic and modeling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem. Eng. J. , Vol. 112, P. 1-11. https://doi.org/10.1016/j.cej.2005.06.004
  15. Atroshchenko, V.I., Loboiko, A.Ya., Yurchenko, A.P., & Zviahintsev, G.L. (1977). Izuchenie kinetiki konversii metana i okisi uhleroda pod davleniem. Nauchnye osnovy kataliticheskoi konversii uhlevodorodov. Kiev: Nauk. dumka, P. 51-62 [in Russian].
  16. Goldshtik, M.A. (1984). Protsessy perenosa v zernistom sloe. Novosibirsk: In-t teplofiziki AN SSSR [in Russian].
  17. Kunii, D., & Smith, J. M. (1960). Heat transfer characteristics of porous rocks. AIChE J, Vol. 6, No. 1. P. 71—78. https://doi.org/10.1002/aic.690060115


Full text (PDF)