Influence of operating parameters and non-equilibrium conversion on the characteristics of thermochemical recuperation of the heat of gases of high-temperature installations

Yatsenko V.P., Cand. Sci. (Eng.), Senior Researcher, Redkin V.B., Cand. Sci. (Eng.), Senior Researcher
Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha St., Kyiv, 03680, Ukraine
Language: Ukrainian
Source: Problemy zahal`noi enerhetyky - The Problems of General Energy, 2016, 1(44):48-53
https://doi.org/10.15407/pge2016.01.048
Section: Study and optimization of the technological objects and systems of the energy sector
UDC: 536.7
Received: 25.12.2015
Published: 13.04.2016
Abstract: We have performed the calculations of thermodynamic of parameters of thermochemical recuperation (TCR) of the heat of exhaust gas of industrial furnaces and internal combustion engine (ICE), which burn natural gas. TCR is based on the conversion of the mixtures natural gas with products of its combustion.
We have established that, in performing the TCR of the heat of an industrial furnace with the distribution of the flow of exhaust gases between the reactor and air heater, one can compensate the negative action non-equilibrium character of conversion by a decrease in the fraction of the flow fed to the reactor.
We have shown that an increase in fraction of reaction mixture fed to the high-temperature reactor of ICE and the corresponding decrease in the flow to the low-temperature enhance both the economy of primary fuel and the efficiency of its use.
To reduce influence of non-equilibrium generation character of conversion on the parameters of recuperation of the heat of an ICE. One should provide conditions under which the non-equilibrium character of reacting mixture in the low-temperature reactor will be minimal.
Keywords: thermochemical recuperation, industrial furnace, internal combustion engine, exhausts gases, the converted fuel, and hemodynamic calculation.
References:
1. Hubynskii, V.Y. & Chzhun-U Lu. (1995). Teoryia plamennykh pechej. Moscow: Mashynostroenye [in Russian].
2. Hoikhman, V.Yu., Ruslov, V.N., & Kostyria, V.A. (1997). Pechnaia teplotekhnyka v proyzvodstve stekla. Kh.: Fakt [in Russian].
3. Mysnik, M.Y., & Svistula, A.E. (2009). Analiz teplofizicheskikh svoistv alternativnykh topliv dlia dvihatelei vnutrenneho shoraniia. Polzunovskii vestnik. 1-2, 37-43 [in Russian].
4. Levterov, A.M., Bhantsev, V.N., & Nechvolod, P.Yu. (2015). Sravnitelnaia eksperimentalnaia otsenka enerhoekolohicheskikh pokazatelei konvertirovannoho hazovoho dvihatelia na baze dizelia. Enerhosberezhenie. Enerhetika. Enerhoaudit, 6 (137), 20-27 [in Russian].
5. Shraiber, O., & Yatsenko V. (2013). Vykorystannia teplovykh vtorynnykh enerhoresursiv metodom termokhimichnoi reheneratsii u dvyhuni vnutrishn'oho zghoriannia [Use of thermal secondary energy resources by the method of thermochemical recuperation in a reciprocating internal combustion engine]. Problemy zahal’noi enerhetyky – The Problems of General Energy, 4 (35), 47-51 [in Ukrainian].
6. Yatsenko, V.P., & Shraiber, O.A. (2014). Vykorystannia teploty vidpratsovanykh haziv promyslovykh pechej metodom termokhimichnoi reheneratsii [Use of the heat of the exhaust gases of industrial furnaces by the method of thermochemical recuperation]. Problemy zahal’noi enerhetyky – The Problems of General Energy, 1 (36), 19-23 [in Ukrainian].