Content of collections

System overview of the methods used to study power units with variable process parameters, and practical aspects of modeling

Kostiuk V.O., PhD (Engin.)
Institute of General Energy of the National Academy of Sciences of Ukraine, 172 Antonovycha St., Kyiv, 03680, Ukraine
Language: Ukrainian
Source: The Problems of General Energy, 2015, 2(41):39-47
https://doi.org/10.15407/pge2015.02.039
Section: Mathematical modeling of energy facilities and systems
UDC: 519.2:620.92+621.31
Received: 10.08.2015
Published: 26.08.2015

Abstract:

The article discusses specifics of technical and economic studies concerning variable or undetermined duty, operating, financial and economic parameters. Based on certain classification indicators (the availability of statistical data and the mean type method) the typical tasks are highlighted and a classification scheme is suggested for basic mathematical methods of studies employed to address a wide range of technical and economic issues related to renewable energy source (RES) power supply systems.
Typical algorithmic diagrams are described and advantages and disadvantages are outlined with regard to basic probabilistic simulation methods depending on the availability of statistical information, and random distribution of parameters. Emphasis is given to the future use of hybrid models combining the features of analytical recording of averaged (steady) and stochastic components for simulating variables, and to practical advantages of well-known simulation modeling methods.
The efficiency of using probabilistic methods to obtain updated technical and economic (price) indices for solar photovoltaic plants (SPVP) subject to the availability of random distribution data relating to technological parameters is confirmed by the results of benchmarking calculations based on the SPVP simulation model developed taking into account the business environment in Ukraine.

Keywords: renewable sources, methods of study, deterministic-stochastic modeling, hybrid model, cost of production.

References:

  1. Stohnii, B.S., Kyrylenko, O.V., Prakhovnyk, O.V., & Denysiuk, S.P. (2012). Evoliutsiia intelektual'nykh elektrychnykh merezh ta ikhni perspektyvy v Ukraini [The evolution of intelligent electrical networks and their prospects in Ukraine]. Tekhnichna elektrodynamika, 5, 52-67 [in Ukrainian].
  2. Kyrylenko, O.V., Pavlovskyi, V.V., Lukianenko, L.M., & Trach, I.V. (2012). Problemy intehratsii vidnovliuvanykh dzherel elktroenerhii v «slabki» elektrychni merezhi [The problem of integration of renewable source of energy into the “weak” electrical networks]. Tekhnichna elektrodynamika, 3, 25 - 26 [in Ukrainian].
  3. Savulescu, S.C. (2009). Real-time stability assessment in modern power system control centers. IEEE Press, Series on Power Engineering. John Willey&Sons [in English]. https://doi.org/10.1002/9780470423912
  4. Pavlovskyi, V.V., Lukianenko, L.M., Steliuk, A.O., Honcharenko, I.S., & Len'ha, O.V. (2013). Stokhastychne modeliuvannia rezhymiv vitrovykh elektrostantsij [Stochastic modeling of wind power plants]. Vidnovlyuvana energetyka - Renewable energy, 1, 58–68 [in Ukrainian].
  5. Jamil, M., Kirmani, Sh., & Rizwan, M. (2012). Techno-Economic Feasibility Analysis of Solar Photovoltaic Power Generation: A Review. Smart Grid and Renewable Energy, 3, 266 - 274 [in English]. https://doi.org/10.4236/sgre.2012.34037
  6. Kostiuk, V.O., Okhrimenko, I.A., & Khanytska, O.O. (2014). Otsinka efektyvnosti intehrovanoi heliokolektornoi systemy hariachoho vodopostachannia na osnovi modeli zhyttievoho tsyklu [Evaluating the Effectiveness of Integrated Solar and Collector Hot Water System Based on the Life Cycle Model]. Naukovi pratsi DonNTU. Seriia "Elektrotekhnika i enerhetyka" - Donetskiy NTU [Collected volume of science papers "Electrical Engineering and Energy", 1 (16), 95-100 [in Ukrainian].
  7. Kostiuk, V.O., Shulzhenko, S.V., & Okhrimenko, I.A. (2014). Tekhniko-ekonomichni otsinky vyrobnytstva elektroenerhii fotoelektrychnymy stantsiiamy i problema valoryzatsii vidnovliuvanykh dzherel enerhii v Ukraini [Feasibility assessment of photovoltaic electricity generation plant and valorization problem of renewable energy sources in Ukraine]. Tekhnichna elektrodynamika, 5, 59- 1 [in Ukrainian].
  8. Mhitarian, N.M., Kudria, S.O., Jacenko, L.V., Shynkarenko, M.D,. Tkalenko, V.I., & Budko, V.I. (2013). Kompleksnoe ispol'zovanie jenergii vozobnovljaemyh istochnikov [Complex use of renewable energy sources]. Al'ternativnaja jenergetika i jekologija - International Scientific Journal for Alternative Energy and Ecology, 17 (139), 15 - 22 [in Russian].
  9. Dufo-Lopez, R., & Bernal-Agustin, JL. (2008). Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renewable Energy, Vol. 33, Issue 12, 2559-2572 [in English]. https://doi.org/10.1016/j.renene.2008.02.027
  10. Ashok, S. (2007). Optimized model for community based hybrid energy system. Renewable Energy. Elsevier, 32, 1155-1164 [in English]. https://doi.org/10.1016/j.renene.2006.04.008
  11. Kyrylenko, O.V., Pavlovskyi, V.V., & Lukianenko, L.M. (2011). Tekhnichni aspekty vprovadzhennia dzherel rozpodil'noi heneratsii v elektrychnykh merezhakh [Technical aspects of adoption of distributed generation sources in electric mains]. Tekhnichna elektrodynamika, 1, 46-53 [in Ukrainian].
  12. Kyrylenko, O.V., Pavlovskyi, V.V., Yandulskyi, O.S., & Steliuk, A.O. (2012). Keruvannia rezhymom roboty elektrostantsii z vidnovliuvanymy dzherelamy enerhii v umovakh zminy chastoty v enerhosystemi [Control of power plant with renewable energy sources in condition of changing frequency in power system ]. Tekhnichna elektrodynamika, 4, 52-57 [in Ukrainian].
  13. Lukianenko, L.M., Lukianenko, L.M., Goncharenko, I.S., & Blonska, O.V. (2014). Determination of the optimal placement and capacity of distributed generation. IEEE International Conference on Intelligent Energy and Power Systems (IEPS). (рр. 159–162). Kyiv [in English]. https://doi.org/10.1109/IEPS.2014.6874170
  14. Gihman, I.I., Skorohod, A.V., & Jadrenko, M.I. (1979). Teorija verojatnostej i matematicheskaja statistika [Probability theory and mathematical statistics]. Кyiv: Vyscha shkola [in Russian].
  15. Bostan, I., Gheorghe, A., & Dulgheru, V. et al. (2013). Resilient energy systems. Renewables: Wind, Solar, Hydro. Springer Science+Business Media B.V. [in English]. https://doi.org/10.1007/978-94-007-4189-8
  16. Kuznetsov, M.P. (2013). Zastosuvannia normal'noho rozpodilu do opysu shvydkosti vitru [The use of normal distribution for wind speed represepresentation]. Vidnovlyuvana energetyka - Renewable Energy, 2, 53-58 [in Ukrainian].
  17. Kuznietsov, M.P. (2015). Imovirnisni kharakterystyky potuzhnosti vitroelektrychnykh stantsii u skladi elektroenerhetychnoi systemy [Probabilistic characteristics of power of wind farms as part of the power system]. Extended abstract of Doctor's thesis. Kyiv [in Ukrainian].
  18. Venikov, V.A., Zuev, Je.N., & Litkens, I.V. (1981). Jelektricheskie sistemy. Matematicheskie zadachi jelektrojenergetiki [Electrical systems. Mathematical problems of electrical power engineering]. Moscow: Vysshaja shkola [in Russian].
  19. Sakalauskas, L. (2005). Nelinejnaja stohasticheskaja optimizacija metodom Monte-Karlo [Nonlinear stochastic optimization by Monte-Carlo]. Stochastic optimization in Information Technologies. St. Petersburg: University of St. Petersburg, 190-204 [in Russian].
  20. Bottou, L. (2003). Stochastic Learning. Lecture. NEC Labs of America, Princeton NJ, USA [in English].
  21. Kostiuk, V.O. (2015). Modyfikovani skhemy rozrakhunku normovanoi tsiny vyrobnytstva v zadachakh determinovano-stokhastychnoho modeliuvannia novykh elektroheneruval'nykhob'iektiv [The modified technique for levelized energy cost computing to provide deterministic and stochastic modeling of new generating facilities]. Enerhetyka: ekonomika, tekhnolohii, ekolohiia - Power engineering: economics, technics, ecology, 2, 64-77 [in Ukrainian].
  22. Cramer, H. (1975). Математические методы статистики [Mathematical Methods of Statistics]. Мoscow: Mir [in Russian].
  23. Perninge, M. (2009). Modeling the uncertainties involved in net transmission capacity calculation. Licenciate Thesis, KTH School of Electrical Engineering, Stockholm, Sweden [in English].
  24. Kyryk ,V.V., & Hubatiuk, O.S. (2013). Rehuliuvannia rezhymu napruhy merezhi z dzherelamy rozpodilenoi heneratsii [Voltage mode control of the grid with distributed generation]. Optyko-elektronni informatsijno-enerhetychni tekhnolohii - Optoelectronic information-power technologies, 1, 125-128 [in Ukrainian].
  25. Zade, L.A. (1976). Ponjatie lingvisticheskoj peremennoj i ego primenenie k prinjatiju priblizhennyh reshenij [The concept of a linguistic variable and its application to approximate reasoning]. Мoscow: Mir, [in Russian].
  26. Podatkovyi Kodeks Ukrainy [Tax Code of Ukraine]. (2010). Retrieved from: http://zakon2.rada.gov.ua/laws/show/2755-17 [in Ukrainian].

Downloads:

Full text (PDF)